Geriatetreiber unter
Linux

Konstantin Veltmann

22.Jan.2026

Der Quelltext dieser Arbeit sowie Beispielcode und das vollstandige Quellenverzeichnis sind
unter https://git.veltko.de/Weckyy702/uc-ausarbeitung-linux-treiber® mit der GPL lizensiert
aufzufinden.

https://git.veltko.de/Weckyy702/uc-ausarbeitung-linux-treiber

Inhaltsverzeichnis

1o BInleitung . ..o 1
1.1. Geratezugriff per Dateisystemooiiiiiiii e 1
1.1.1. Device-Dateienoiiiiiiii i 1

1.1.2. Zugriff Gber Sysfso 2

2. Beschreibung hardwarespezifischer Schnittstellen unter Linux 3
72 R O 3
2.2, BP0 3
2.3, A C 5

3. Design einer Hardwareschnittstelle fiir AT9OISAM7-Timeroovviiiiiiiiiinnnnn.. 6
3.1, Features ..o o 6
3.1.1. Capture-Modus 6

3.1.2. Waveform-Modusoooiiiiiii 6

3.2, UMSELZUIE . oottt et 6

4. Scheduling bei geteilten Bussystemenoviiiiiiiiiiiiiiiiii s 8
4.1. LOSUNGSANSALZttt 8

Bibliografieo 10

1. Einleitung

Damit Computersysteme mit ihrer Umwelt interagieren konnen, ist die Kommunikation mit
externen Sensoren und Aktoren erforderlich. Eine der Aufgaben eines Betriebssystems besteht
darin, gemeinsame Schnittstellen fiir verschiedene Gerite bereitzustellen[1]. Unter Linux
werden hierfiir sogenannte device files[2] verwendet, die den Zugriff auf diese Geréte iiber
klassische Dateioperationen erméglichen.

1.1. Geriatezugriff per Dateisystem

Nach der UNIX-Philosophie ,Everything is a file“[3] melden Geritetreiber spezielle Dateien
im virtuellen Dateisystem an (in der Regel im Verzeichnis /dev oder /sys). Wird auf einer
solchen Datei ein Systemaufruf wie write() ausgefiihrt, so wird eine Funktion im Kernel-
treiber aufgerufen, die die ,geschriebenen’ Daten an das physische Gerit weiterleitet.

1.1.1. Device-Dateien

Folgender Beispielcode[4] zeigt die Kommunikation mit einem BME280-Sensor mithilfe des

Userspace I°C-Treibers auf einem Raspberry Pi:

int main() {
// O0ffne die Device-Datei
int driver = open("/dev/i2c-1"); // (1)

// Setze die Slave-Adresse flr nachfolgende Transaktionen
ioctl(driver, I2C SLAVE, 0x76); // (2)

// Schreibe die Adresse fir das ID-Register
uint8 t const write buf[] = {0xd0};
write(driver, write buf, sizeof(write buf)); // (3)

// Lese aus dem ID-Register. NOTE: Das ist eine separate I2C-Transaktion!
uint8 t id;
read(driver, &id, 1); // (4)

printf("ID: %"PRIu8, id);
}

Der Beispielcode zeigt die vier typischen Datei-Operationen bei der Arbeit mit Device-

Dateien:

1. Wie jede andere Datei muss die Device-Datei ge6ffnet werden. Der Treiber richtet dabei die
notwendigen Verwaltungsstrukturen fiir die weitere Nutzung durch die Anwendung ein.

2. Der ioctl -Systemaufruf dient dazu, Treibereinstellungen zu dndern oder Operationen
auszufithren, die nicht iiber read oder write abgebildet werden konnen. Die Flags und
Parameter fiir ioctl sind treiberabhangig.

3. Der write -Systemaufruf sendet eine schreibende Transaktion auf den I?C-Bus. In der
Regel wird write verwendet, um Daten auf Busse zu schreiben oder Ausgénge zu schalten.

4. read fihrt eine lesende Transaktion auf dem I’C-Bus aus. read wird typischerweise
verwendet, um Geritedaten auszulesen oder von Bussen zu empfangen.

EINLEITUNG 1

Typischerweise stellt der Kernel eine Begleitbibliothek wie 1libi2c fiir I?*C-Operationen
bereit, um versionsabhiangige Unterschiede zu abstrahieren. Diese Bibliotheken werden hier
nicht niher beschrieben, stellen jedoch die empfohlene Schnittstelle dar.

1.1.2. Zugriff iiber Sysfs

Einige Geritetreiber registrieren keine Dateien in /dev, sondern werden tiber Dateien im
virtuellen Dateisystem unter /sys kontrolliert. Die Konvention dafiir ist, dass fiir Eingabe-/
Ausgabe-Operationen mit Geréten die Dateien in /dev verwendet werden, wihrend /sys
fur strukturierte Zugriffe und Konfiguration verwendet wird[5].

Gerite-Dateien in /sys haben eine String-basierte Schnittstelle, es werden also menschen-
lesbare Werte in verschiedenen Dateien geschrieben. Das macht die Interaktion mit /sys
-Dateien in der Shell attraktiv.

Folgender Shell-Code liest die momentane Batteriespannung meines Laptops aus.

ADC-Dateien finden, haben i.d.R voltage im Namen

find /sys -iname "*voltage*"
BAT='/sys/devices/[...]/BAT1/voltage now' # Pfad geklrzt
cat $BAT

> 12832000 [uV]

Folgender Shell-Code stellt auf einem Banana Pi R3° die Drehgeschwindigkeit des CPU-
Kiihlers auf 40%:

echo 40 > /sys/devices/platform/pwm-fan/hwmon/hwmonl/pwml

2 EINLEITUNG

https://wiki.banana-pi.org/index.php?title=Banana_Pi_BPI-R3&oldid=17314

2. Beschreibung hardwarespezifischer Schnittstellen unter
Linux
2.1. I’C

Wie in der Einleitung beschrieben stellt der I*C-Treiber device-Dateien unter /dev/i2c-*
bereit.

« Implementiert in drivers/i2c/i2c-dev.c ®

« Offizielle Dokumentation®

Implementierte Systemaufrufe:

SyscALL FuNKkTION

Setzt die Slave-Adresse fiir alle folgenden I°C-

ioctl(<file>, I2C SLAVE, <addr>))
Transaktionen

Sendet die Daten aus buf in einer einzelnen
write(<file>, <buf>, <len>) I?’C-Schreib-Operation an die gesetzte Slave-
Adresse

Liest len Bytes vom ausgewdihlten Slave in

read(<file>, <buf>, <len>)
buf

Sendet mehrere Schreibe- und Lese-Operatio-
ioctl(<file>, I2C_RDWR, <msgset>) nen an den ausgewdhlten Slave in einer Trans-
aktion ohne Stop-Conditions

Tabelle 1: Systemaufrufe des I?°C-Treibers

In modernen Computersystemen wird der mit I’C kompatible SMBus verwendet. Daher stellt
der Treiber noch weitere ioctls bereit, die hier jedoch nicht besprochen werden.

2.2. GPIO

Der GPIO-Treiber stellt zwei Schnittstellen bereit, eine unter /dev und eine veraltete unter

/sys . Hier wird die aktuelle empfohlene Variante beschrieben.

 Implementiert in drivers/gpio/gpiolib-cdev.c °
« Offizielle Dokumentation®.

Implementierte Systemaufrufe:

SyscAaLL FunkTION

Informatio-
) , o nen iber ei-
ioctl(<file>, GPIO GET CHIPINFO IOCTL, <chip_ info>) .

nen Gpio-

Chip holen

Stoppt das

ioctl(<file>, GPIO GET LINEINFO UNWATCH IOCTL , <line offset>)
- - - - - Beobachten

https://github.com/torvalds/linux/blob/master/drivers/i2c/i2c-dev.c
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html
https://github.com/torvalds/linux/blob/master/drivers/gpio/gpiolib-cdev.c
https://www.kernel.org/doc/html/latest/userspace-api/gpio/chardev.html

SyscALL

ioctl(<file>, GPIO V2 GET LINEINFO IOCTL, <line info>)

ioctl(<file>, GPIO V2 GET_LINEINFO WATCH IOCTL, <line info>)

ioctl(<file>, GPIO V2 GET LINE IOCTL, <line request>)

ioctl(<file>, GPIO V2 LINE SET CONFIG IOCTL, <line config>)

ioctl(<file>, GPIO V2 LINE GET VALUES IOCTL, <line values>)

ioctl(<file>, GPIO V2 LINE SET VALUES IOCTL, <line values>)

FuNkTION

eines GPIO-
Pins

Beschafft In-
formationen
uber einen

spezifischen
GPIO-Pin

Beschafft In-
formationen
iiber einen
GPIO-Pin
und macht
nachfolgen-
de Ande-
rungen iiber
read ver-

fugbar

Reserviert
und konfi-
guriert ei-
nen GPIO-
Pin fur das
aufrufende

Programm

Setzt At-
tribute fur
einen Pin,
zum Bei-
spiel In-
put/Output

oder active
LOW/HIGH

Liest Wer-
te von meh-
reren Ein-
gangs-Pins
Setzt/Cle-
ared meh-

rere Aus-
gangs-Pins

Tabelle 2: Systemaufrufe des GPIO-Treibers

2.3. ADC

ADCs werden in Linux nicht direkt als eigene Gerateklasse verwaltet, sondern sind in der
Regel als Hardware Monitoring (Uberwachung) oder Industrial I/O (iio) gelistet.

Als Beispiel wird hier der Kernel-eigene Treiber fiir den ADC des Cirrus Logic
EP93xx SoC[6] genutzt. Dabei wird fiir jeden der ADC-Pins ein eigener Eintrag unter
/sys/bus/iio/devices/iio:device<N>/ angelegt, wobei N die Gerate-ID ist:

SyYsFs-EINTRAG NAME DES GESAMPLETEN PINS
in_voltage0_raw Y-
in_voltagel_raw SX+
in_voltage2_raw SX-
in_voltage3_raw sY+
in_voltage4_raw sY-
in_voltage5_raw X+
in_voltage6_raw X-
in_voltage7_raw Y+

Tabelle 3: Sysfs-Eintrage des ADC-Treibers
Das Auslesen einer dieser Datein fithrt synchron eine ADC-Umwandlung durch.

Aus der Dokumentation anderer ADC-Treiber[7] geht hervor, dass der in voltageX raw
-Wert der unskalierte Bitwert des ADC ist. Die Datei /sys/[...]/in voltage scale
beinhaltet den Umrechnungswert vom Rohwert zu Millivolt. Manche Treiber stellen zusétzlich
die Datei /sys/[...]1/in voltage offset bereit, die einen konstanten Fehlerwert enthalt.
Die vollstandige Umrechnung ist dann:

U[mv] = (voltage_raw - voltage_scale) + voltage_offset

BESCHREIBUNG HARDWARESPEZIFISCHER SCHNITTSTELLEN UNTER LINUX 5

3. Design einer Hardwareschnittstelle fiir AT91SAM7-Timer

Der AT91SAM7-Mikrocontroller[8] stellt das Timer Counter Peripheral bereit; Drei unabhan-
gige 16-bit Zahler, Kanile genannt, mit einstellbaren Taktgeschwindigkeiten, Uberlaufgrenzen
und Triggern.

3.1. Features

Jeder Kanal kann sich in einem der folgenden Modi befinden:
« Capture zum Festhalten von Zeitpunkten, zu denen Eingénge geschaltet wurden
« Waveform zum Erzeugen von einstellbaren Rechtecksignalen

Auflerdem hat jeder Kanal drei Eingangssignale XC0-2 , zwei Ausgangssignale A/B und kann
einen von fiinf Vorteilern wéhlen.

3.1.1. Capture-Modus

Im Capture-Modus zahlt der Zahler kontinuierlich und es wir bei einem konfigurierbaren
Event (eine Flanke auf TIOA oder TIOB) der Zahlerstand in eins der Register geschrieben.

Dieser Modus ist unter anderem fiir die Bestimmung von Frequenz, Pulszeit und Pahsenbe-

stimmung eins oder mehrerer anliegender Signale gedacht.

3.1.2. Waveform-Modus

Dieser Modus ist fiir die Erzeugung von Rechtecksignalen gedacht. Es gibt vier Untermodi:

Mobpus ZAHLRICHTUNG VERHALTEN WENN = RC
00 Hoch Nichts, nur durch Uberlauf zuriickgesetzt
10 Hoch Zurucksetzen auf 0

01 Hoch, dann Runter Nichts, Richtungswechsel wenn = 0 oder = OxFFFF
11 Hoch, dann Runter Richtungswechsel

Tabelle 4: Wellenmodi im Waveform-Modus

Auflerdem wird der Zéhlerwert immer mit den Werten in den Registern RA/RB/RC auf
Gleichheit verglichen. Die daraus entstehenden Trigger-Signale konnen dann die Ausganspins
A/B jeweils entweder einschalten, ausschalten oder umschalten.

3.2. Umsetzung
Die API ist an der Struktur der GPIO-API orientiert.

Jeder Kanal muss mit REQ CHANNEL vom Kernel angefragt werden, damit ein Kanal von
genau einem Prozess verwaltet wird. Mithilfe der SET_MODE_CAPTURE und SET MODE WAVE
ioctl s wird der Kanal in den jeweiligen Modus versetzt und konfiguriert. Der TIMER_START
-Befehl startet einen einzelnen Kanal. Wenn der aufrufende Prozess alle Kanale kontrolliert,
kann TIMER START auf dem Timer selbst aufgerufen werden, was das SYNC-Signal fiir alle

Kanaile setzt.

Folgend eine Beispielanwendung:

int main() {
int timer fd = open("/dev/timer@");

int ch® = ioctl(timer_ fd, REQ_CHANNEL IOCTL, 0);
int some free channel = ioctl(timer_ fd, REQ CHANNEL IOCTL, -1);

struct capture_config capture config = {
.clock = CLOCK 1, // = TIMER CLOCK1
.clock burst = CLOCK BURST NONE, // Oder CLOCK BURST TIOAQ/1/2
.clock invert = false,
.a_edge = EDGE_RISING,
.b_edge = EDGE_NONE,
.external trigger = EXT TRIGGER A,
.interrupt on = INT LDRA | INT LDRB | INT OVF, // Aktivierte interrupts
.compare = -1, //Deaktiviert CPCTRG, >0 aktiviert CPCTRG

¥
ioctl(ch®, SET MODE CAPTURE, &capture config);

struct wave config wave config = {
.clock = CLOCK TIOA2, //-EINVAL wenn nicht verflgbar
.clock invert = true,
.wave _mode = WAVE MODE UP RC TRIGGER, // WAVSEL = 10

.ra = 100,
.rb = 0x4000,
.rc = Ox9fff,

.tioa = (struct mtio) {
.a_mode = MTIO MODE SET,
.b_mode = MTIO MODE CLEAR,
.C_mode = MTIO MODE TOGGLE,
.sw_mode = MTIO MODE NONE,
}
.tiob = (struct mtio) {0}, // TIOB ist deaktiviert
¥
ioctl(some_ free channel, SET MODE WAVE, &wave config);

//Wirde mit dem SYNC-Signal alle Kanale starten,
//allerdings hat dieser Prozess nicht alle Kanale angefragt.
//Der Aufruf wirde also fehlschlagen

//ioctl(timer fd, TIMER START);

ioctl(chO, TIMER START); //Setzt SWTRG

struct capture_event capture_event;

// Blockiert bis mindestens eins der Signale in interrupt on ausgeldst
wurde

read(ch@, &capture event, sizeof(capture event));

}

DESIGN EINER HARDWARESCHNITTSTELLE FUR AT91SAM7-TIMER

4. Scheduling bei geteilten Bussystemen

Angenommen man habe ein smartes Thermostat mit folgenden Sensoren und Aktoren, alle
angeschlossen iiber einen geteilten I’C-Bus:

« OLED-Display

+ BME280 Temperatur- und Luftfeuchtigkeitsmesser

Jedes der Gerédte hat einen eigenen Treiber, der tiber die kerneleigenen I?C-Funktionen auf
den Bus zugreift.

Da Displays typischerweise hohe Datenraten brauchen, verbringt der Display-Treiber viel Zeit
auf dem Bus. Zudem sollen in regelmafigen Abstanden Temperatur und Luftfeuchtigkeit vom

Sensor angefragt werden.
| EEDE0 (), DO
Temperatur H ‘(

Abbildung 1: Gantt-Diagramm des smarten Thermostats

Wie in Abbildung 1 gezeigt, wird durch die haufigen Display-Ubertragungen der Temperatur-
Sensor ,ausgehungert® (schraffierter Hintergrund) und kann seine Daten nicht rechtzeitig
iibertragen.

Dieses Problem gehort zur Klasse der Scheduling-Aufgaben. Ein klassischer Losungsansatz
wird im nachsten Abschnitt besprochen

4.1. Losungsansatz

Da hier eine geteilte Ressource (der Bus) fair zwischen mehreren Clients (den Treibern)
verteilt werden soll, bietet sich ein Scheduling-Verfahren[9] an.

Fragt ein Client einen I?C-Transfer an, so wird er nicht direkt ausgefiihrt, sondern mit anderen
ausstehenden Anfragen in einer Queue (dt. Warteschlange)[10] gespeichert. Nun kann der
I?’C-Scheduler die nachste anstehende Transaktion nach einem Scheduling-Verfahren wie dem
Completely Fair Scheduler[11] aussuchen und durchfithren, um Aushungern zu vermeiden.

Nachfolgend ist der Ablauf mit dem simplen Round-Robin-Verfahren[12] gezeigt, das keine
Fairness garantiert:

8 SCHEDULING BEI GETEILTEN BUSSYSTEMEN

t=1

t=2

Sensor Display

1

FIFO

v

1

(]

-

=)

~

Blal

B

Do

Abbildung 2: I’C-Scheduling mit Round Robin

I%C-Bus

(1)

Bibliografie

[1] J. Aiman, , 5 Functions of an Operating System “. 2025.

[2] linux kernel contributors, ,Character device drivers®.

[3] N.Brown, ,Ghosts of Unix Past: a historical search for design patterns®. 2010.
[4] K. Veltmann, 2026.

[5] Y.Salem, ,The Difference Between /dev and /sys/class. 2024.

[6] the kernel development community, ,,Cirrus Logic EP93xx ADC driver®.

[7]1 ,How to Use the SAMA5D2 ADC Under Linux®“. 2355 West Chandler Blvd. Chandler, Arizona, USA,
2019.

[8] ,AT91SAM ARM-based Flash MCU®. 2355 West Chandler Blvd. Chandler, Arizona, USA, 2012.
[9] wikipedia contributors, ,Prozess-Scheduler®. 2024.

[10] wikipedia contributors, ,Queue (abstract data type)“. 2026.

[11] wikipedia contributors, ,Completely Fair Scheduler®. 2025.

[12] wikipedia contributors, ,Round Robin (Informatik)®. 2024.

	1. Einleitung
	1.1. Gerätezugriff per Dateisystem
	1.1.1. Device-Dateien
	1.1.2. Zugriff über Sysfs

	2. Beschreibung hardwarespezifischer Schnittstellen unter Linux
	2.1. I²C
	2.2. GPIO
	2.3. ADC

	3. Design einer Hardwareschnittstelle für AT91SAM7-Timer
	3.1. Features
	3.1.1. Capture-Modus
	3.1.2. Waveform-Modus

	3.2. Umsetzung

	4. Scheduling bei geteilten Bussystemen
	4.1. Lösungsansatz

	Bibliografie

