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1. Einleitung

Damit Computersysteme mit ihrer Umwelt interagieren können, ist die Kommunikation mit 

externen Sensoren und Aktoren erforderlich. Eine der Aufgaben eines Betriebssystems besteht 

darin, gemeinsame Schnittstellen für verschiedene Geräte bereitzustellen[1]. Unter Linux 

werden hierfür sogenannte device files[2] verwendet, die den Zugriff auf diese Geräte über 

klassische Dateioperationen ermöglichen.

1.1. Gerätezugriff per Dateisystem

Nach der UNIX-Philosophie „Everything is a file“[3] melden Gerätetreiber spezielle Dateien 

im virtuellen Dateisystem an (in der Regel im Verzeichnis /dev  oder /sys ). Wird auf einer 

solchen Datei ein Systemaufruf wie write()  ausgeführt, so wird eine Funktion im Kernel

treiber aufgerufen, die die ‚geschriebenen‘ Daten an das physische Gerät weiterleitet.

1.1.1. Device-Dateien

Folgender Beispielcode[4] zeigt die Kommunikation mit einem BME280-Sensor mithilfe des 

Userspace I²C-Treibers auf einem Raspberry Pi:

int main() {

  // Öffne die Device-Datei

  int driver = open("/dev/i2c-1");                  // (1)

  // Setze die Slave-Adresse für nachfolgende Transaktionen

  ioctl(driver, I2C_SLAVE, 0x76);                   // (2)

  // Schreibe die Adresse für das ID-Register

  uint8_t const write_buf[] = {0xd0};

  write(driver, write_buf, sizeof(write_buf));      // (3)

  // Lese aus dem ID-Register. NOTE: Das ist eine separate I²C-Transaktion!

  uint8_t id;

  read(driver, &id, 1);                             // (4)

  printf("ID: %"PRIu8, id);

}

Der Beispielcode zeigt die vier typischen Datei-Operationen bei der Arbeit mit Device-

Dateien:

1. Wie jede andere Datei muss die Device-Datei geöffnet werden. Der Treiber richtet dabei die 

notwendigen Verwaltungsstrukturen für die weitere Nutzung durch die Anwendung ein.

2. Der ioctl -Systemaufruf dient dazu, Treibereinstellungen zu ändern oder Operationen 

auszuführen, die nicht über read  oder write  abgebildet werden können. Die Flags und 

Parameter für ioctl  sind treiberabhängig.

3. Der write -Systemaufruf sendet eine schreibende Transaktion auf den I²C-Bus. In der 

Regel wird write  verwendet, um Daten auf Busse zu schreiben oder Ausgänge zu schalten.

4. read  führt eine lesende Transaktion auf dem I²C-Bus aus. read  wird typischerweise 

verwendet, um Gerätedaten auszulesen oder von Bussen zu empfangen.
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Typischerweise stellt der Kernel eine Begleitbibliothek wie libi2c  für I²C-Operationen 

bereit, um versionsabhängige Unterschiede zu abstrahieren. Diese Bibliotheken werden hier 

nicht näher beschrieben, stellen jedoch die empfohlene Schnittstelle dar.

1.1.2. Zugriff über Sysfs

Einige Gerätetreiber registrieren keine Dateien in /dev , sondern werden über Dateien im 

virtuellen Dateisystem unter /sys  kontrolliert. Die Konvention dafür ist, dass für Eingabe-/

Ausgabe-Operationen mit Geräten die Dateien in /dev  verwendet werden, während /sys  

für strukturierte Zugriffe und Konfiguration verwendet wird[5].

Geräte-Dateien in /sys  haben eine String-basierte Schnittstelle, es werden also menschen

lesbare Werte in verschiedenen Dateien geschrieben. Das macht die Interaktion mit /sys

-Dateien in der Shell attraktiv.

Folgender Shell-Code liest die momentane Batteriespannung meines Laptops aus.

# ADC-Dateien finden, haben i.d.R voltage im Namen

find /sys -iname "*voltage*"

BAT='/sys/devices/[...]/BAT1/voltage_now' # Pfad gekürzt

cat $BAT

# > 12832000 [µV]

Folgender Shell-Code stellt auf einem Banana Pi R3  die Drehgeschwindigkeit des CPU-

Kühlers auf 40%:

echo 40 > /sys/devices/platform/pwm-fan/hwmon/hwmon1/pwm1
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2. Beschreibung hardwarespezifischer Schnittstellen unter 

Linux

2.1. I²C

Wie in der Einleitung beschrieben stellt der I²C-Treiber device-Dateien unter /dev/i2c-*  

bereit.

• Implementiert in drivers/i2c/i2c-dev.c

• Offizielle Dokumentation

Implementierte Systemaufrufe:

Syscall Funktion

ioctl(<file>, I2C_SLAVE, <addr>)
Setzt die Slave-Adresse für alle folgenden I²C-

Transaktionen

write(<file>, <buf>, <len>)

Sendet die Daten aus buf  in einer einzelnen 

I²C-Schreib-Operation an die gesetzte Slave-

Adresse

read(<file>, <buf>, <len>)
Liest len  Bytes vom ausgewählten Slave in 

buf

ioctl(<file>, I2C_RDWR, <msgset>)

Sendet mehrere Schreibe- und Lese-Operatio

nen an den ausgewählten Slave in einer Trans

aktion ohne Stop-Conditions

Tabelle 1: Systemaufrufe des I²C-Treibers

In modernen Computersystemen wird der mit I²C kompatible SMBus verwendet. Daher stellt 

der Treiber noch weitere ioctls  bereit, die hier jedoch nicht besprochen werden.

2.2. GPIO

Der GPIO-Treiber stellt zwei Schnittstellen bereit, eine unter /dev  und eine veraltete unter 

/sys . Hier wird die aktuelle empfohlene Variante beschrieben.

• Implementiert in drivers/gpio/gpiolib-cdev.c

• Offizielle Dokumentation .

Implementierte Systemaufrufe:

Syscall Funktion

ioctl(<file>, GPIO_GET_CHIPINFO_IOCTL, <chip_info>)

Informatio

nen über ei

nen Gpio-

Chip holen

ioctl(<file>, GPIO_GET_LINEINFO_UNWATCH_IOCTL , <line_offset>)
Stoppt das 

Beobachten 
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Syscall Funktion

eines GPIO-

Pins

ioctl(<file>, GPIO_V2_GET_LINEINFO_IOCTL, <line_info>)

Beschafft In

formationen 

über einen 

spezifischen 

GPIO-Pin

ioctl(<file>, GPIO_V2_GET_LINEINFO_WATCH_IOCTL, <line_info>)

Beschafft In

formationen 

über einen 

GPIO-Pin 

und macht 

nachfolgen

de Ände

rungen über 

read  ver

fügbar

ioctl(<file>, GPIO_V2_GET_LINE_IOCTL, <line_request>)

Reserviert 

und konfi

guriert ei

nen GPIO-

Pin für das 

aufrufende 

Programm

ioctl(<file>, GPIO_V2_LINE_SET_CONFIG_IOCTL, <line_config>)

Setzt At

tribute für 

einen Pin, 

zum Bei

spiel In

put/Output 

oder active 

LOW/HIGH

ioctl(<file>, GPIO_V2_LINE_GET_VALUES_IOCTL, <line_values>)

Liest Wer

te von meh

reren Ein

gangs-Pins

ioctl(<file>, GPIO_V2_LINE_SET_VALUES_IOCTL, <line_values>)

Setzt/Cle

ared meh

rere Aus

gangs-Pins
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Tabelle 2: Systemaufrufe des GPIO-Treibers

2.3. ADC

ADCs werden in Linux nicht direkt als eigene Geräteklasse verwaltet, sondern sind in der 

Regel als Hardware Monitoring (Überwachung) oder Industrial I/O (iio) gelistet.

Als Beispiel wird hier der Kernel-eigene Treiber für den ADC des Cirrus Logic 

EP93xx SoC[6] genutzt. Dabei wird für jeden der ADC-Pins ein eigener Eintrag unter 

/sys/bus/iio/devices/iio:device<N>/  angelegt, wobei 𝑁  die Geräte-ID ist:

Sysfs-Eintrag Name des gesampleten Pins

in_voltage0_raw Y-

in_voltage1_raw sX+

in_voltage2_raw sX-

in_voltage3_raw sY+

in_voltage4_raw sY-

in_voltage5_raw X+

in_voltage6_raw X-

in_voltage7_raw Y+

Tabelle 3: Sysfs-Einträge des ADC-Treibers

Das Auslesen einer dieser Datein führt synchron eine ADC-Umwandlung durch.

Aus der Dokumentation anderer ADC-Treiber[7] geht hervor, dass der in_voltageX_raw

-Wert der unskalierte Bitwert des ADC ist. Die Datei /sys/[...]/in_voltage_scale  

beinhaltet den Umrechnungswert vom Rohwert zu Millivolt. Manche Treiber stellen zusätzlich 

die Datei /sys/[...]/in_voltage_offset  bereit, die einen konstanten Fehlerwert enthält. 

Die vollständige Umrechnung ist dann:

𝑈[mV] = (voltage_raw ⋅ voltage_scale) + voltage_offset
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3. Design einer Hardwareschnittstelle für AT91SAM7-Timer

Der AT91SAM7-Mikrocontroller[8] stellt das Timer Counter Peripheral bereit; Drei unabhän

gige 16-bit Zähler, Kanäle genannt, mit einstellbaren Taktgeschwindigkeiten, Überlaufgrenzen 

und Triggern.

3.1. Features

Jeder Kanal kann sich in einem der folgenden Modi befinden:

• Capture zum Festhalten von Zeitpunkten, zu denen Eingänge geschaltet wurden

• Waveform zum Erzeugen von einstellbaren Rechtecksignalen

Außerdem hat jeder Kanal drei Eingangssignale XC0-2 , zwei Ausgangssignale A/B  und kann 

einen von fünf Vorteilern wählen.

3.1.1. Capture-Modus

Im Capture-Modus zählt der Zähler kontinuierlich und es wir bei einem konfigurierbaren 

Event (eine Flanke auf TIOA  oder TIOB ) der Zählerstand in eins der Register geschrieben.

Dieser Modus ist unter anderem für die Bestimmung von Frequenz, Pulszeit und Pahsenbe

stimmung eins oder mehrerer anliegender Signale gedacht.

3.1.2. Waveform-Modus

Dieser Modus ist für die Erzeugung von Rechtecksignalen gedacht. Es gibt vier Untermodi:

Modus Zählrichtung Verhalten wenn = RC

00 Hoch Nichts, nur durch Überlauf zurückgesetzt

10 Hoch Zurücksetzen auf 0

01 Hoch, dann Runter Nichts, Richtungswechsel wenn = 0 oder = 0xFFFF

11 Hoch, dann Runter Richtungswechsel

Tabelle 4: Wellenmodi im Waveform-Modus

Außerdem wird der Zählerwert immer mit den Werten in den Registern RA/RB/RC  auf 

Gleichheit verglichen. Die daraus entstehenden Trigger-Signale können dann die Ausganspins 

A/B  jeweils entweder einschalten, ausschalten oder umschalten.

3.2. Umsetzung

Die API ist an der Struktur der GPIO-API orientiert.

Jeder Kanal muss mit REQ_CHANNEL  vom Kernel angefragt werden, damit ein Kanal von 

genau einem Prozess verwaltet wird. Mithilfe der SET_MODE_CAPTURE  und SET_MODE_WAVE  

ioctl s wird der Kanal in den jeweiligen Modus versetzt und konfiguriert. Der TIMER_START

-Befehl startet einen einzelnen Kanal. Wenn der aufrufende Prozess alle Kanäle kontrolliert, 

kann TIMER_START  auf dem Timer selbst aufgerufen werden, was das SYNC-Signal für alle 

Kanäle setzt.

Folgend eine Beispielanwendung:
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int main() {

  int timer_fd = open("/dev/timer0");

  int ch0 = ioctl(timer_fd, REQ_CHANNEL_IOCTL, 0);

  int some_free_channel = ioctl(timer_fd, REQ_CHANNEL_IOCTL, -1);

  struct capture_config capture_config = {

    .clock = CLOCK_1,   // = TIMER_CLOCK1

    .clock_burst = CLOCK_BURST_NONE, // Oder CLOCK_BURST_TIOA0/1/2

    .clock_invert = false,

    .a_edge = EDGE_RISING,

    .b_edge = EDGE_NONE,

    .external_trigger = EXT_TRIGGER_A,

    .interrupt_on = INT_LDRA | INT_LDRB | INT_OVF, // Aktivierte interrupts

    .compare = -1, //Deaktiviert CPCTRG, >0 aktiviert CPCTRG

  };

  ioctl(ch0, SET_MODE_CAPTURE, &capture_config);

  struct wave_config wave_config = {

    .clock = CLOCK_TIOA2,   //-EINVAL wenn nicht verfügbar

    .clock_invert = true,

    .wave_mode = WAVE_MODE_UP_RC_TRIGGER, // WAVSEL = 10

    .ra = 100,

    .rb = 0x4000,

    .rc = 0x9fff,

    .tioa = (struct mtio) {

      .a_mode = MTIO_MODE_SET,

      .b_mode = MTIO_MODE_CLEAR,

      .c_mode = MTIO_MODE_TOGGLE,

      .sw_mode = MTIO_MODE_NONE,

    }

    .tiob = (struct mtio) {0}, // TIOB ist deaktiviert

  };

  ioctl(some_free_channel, SET_MODE_WAVE, &wave_config); 

  //Würde mit dem SYNC-Signal alle Kanäle starten, 

  //allerdings hat dieser Prozess nicht alle Kanäle angefragt.

  //Der Aufruf würde also fehlschlagen

  //ioctl(timer_fd, TIMER_START);

  ioctl(ch0, TIMER_START); //Setzt SWTRG

  struct capture_event capture_event;

  // Blockiert bis mindestens eins der Signale in interrupt_on ausgelöst 

wurde

  read(ch0, &capture_event, sizeof(capture_event));

}
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4. Scheduling bei geteilten Bussystemen

Angenommen man habe ein smartes Thermostat mit folgenden Sensoren und Aktoren, alle 

angeschlossen über einen geteilten I²C-Bus:

• OLED-Display

• BME280 Temperatur- und Luftfeuchtigkeitsmesser

Jedes der Geräte hat einen eigenen Treiber, der über die kerneleigenen I²C-Funktionen auf 

den Bus zugreift.

Da Displays typischerweise hohe Datenraten brauchen, verbringt der Display-Treiber viel Zeit 

auf dem Bus. Zudem sollen in regelmäßigen Abständen Temperatur und Luftfeuchtigkeit vom 

Sensor angefragt werden.

Abbildung 1: Gantt-Diagramm des smarten Thermostats

Wie in Abbildung 1 gezeigt, wird durch die häufigen Display-Übertragungen der Temperatur-

Sensor „ausgehungert“ (schraffierter Hintergrund) und kann seine Daten nicht rechtzeitig 

übertragen.

Dieses Problem gehört zur Klasse der Scheduling-Aufgaben. Ein klassischer Lösungsansatz 

wird im nächsten Abschnitt besprochen

4.1. Lösungsansatz

Da hier eine geteilte Ressource (der Bus) fair zwischen mehreren Clients (den Treibern) 

verteilt werden soll, bietet sich ein Scheduling-Verfahren[9] an.

Fragt ein Client einen I²C-Transfer an, so wird er nicht direkt ausgeführt, sondern mit anderen 

ausstehenden Anfragen in einer Queue (dt. Warteschlange)[10] gespeichert. Nun kann der 

I²C-Scheduler die nächste anstehende Transaktion nach einem Scheduling-Verfahren wie dem 

Completely Fair Scheduler[11] aussuchen und durchführen, um Aushungern zu vermeiden.

Nachfolgend ist der Ablauf mit dem simplen Round-Robin-Verfahren[12] gezeigt, das keine 

Fairness garantiert:
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Abbildung 2: I²C-Scheduling mit Round Robin
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