
Gerätetreiber unter

Linux
Konstantin Veltmann

22.Jan.2026

Der Quelltext dieser Arbeit sowie Beispielcode und das vollständige Quellenverzeichnis sind

unter https://git.veltko.de/Weckyy702/uc-ausarbeitung-linux-treiber mit der GPL lizensiert

aufzufinden.

https://git.veltko.de/Weckyy702/uc-ausarbeitung-linux-treiber

Inhaltsverzeichnis

1. Einleitung . ⁠1

1.1. Gerätezugriff per Dateisystem . ⁠1

1.1.1. Device-Dateien . ⁠1

1.1.2. Zugriff über Sysfs . ⁠2

2. Beschreibung hardwarespezifischer Schnittstellen unter Linux . ⁠3

2.1. I²C . ⁠3

2.2. GPIO . ⁠3

2.3. ADC . ⁠5

3. Design einer Hardwareschnittstelle für AT91SAM7-Timer . ⁠6

3.1. Features . ⁠6

3.1.1. Capture-Modus . ⁠6

3.1.2. Waveform-Modus . ⁠6

3.2. Umsetzung . ⁠6

4. Scheduling bei geteilten Bussystemen . ⁠8

4.1. Lösungsansatz . ⁠8

Bibliografie . ⁠10

1. Einleitung

Damit Computersysteme mit ihrer Umwelt interagieren können, ist die Kommunikation mit

externen Sensoren und Aktoren erforderlich. Eine der Aufgaben eines Betriebssystems besteht

darin, gemeinsame Schnittstellen für verschiedene Geräte bereitzustellen[1]. Unter Linux

werden hierfür sogenannte device files[2] verwendet, die den Zugriff auf diese Geräte über

klassische Dateioperationen ermöglichen.

1.1. Gerätezugriff per Dateisystem

Nach der UNIX-Philosophie „Everything is a file“[3] melden Gerätetreiber spezielle Dateien

im virtuellen Dateisystem an (in der Regel im Verzeichnis /dev oder /sys). Wird auf einer

solchen Datei ein Systemaufruf wie write() ausgeführt, so wird eine Funktion im Kernel

treiber aufgerufen, die die ‚geschriebenen‘ Daten an das physische Gerät weiterleitet.

1.1.1. Device-Dateien

Folgender Beispielcode[4] zeigt die Kommunikation mit einem BME280-Sensor mithilfe des

Userspace I²C-Treibers auf einem Raspberry Pi:

int main() {

 // Öffne die Device-Datei

 int driver = open("/dev/i2c-1"); // (1)

 // Setze die Slave-Adresse für nachfolgende Transaktionen

 ioctl(driver, I2C_SLAVE, 0x76); // (2)

 // Schreibe die Adresse für das ID-Register

 uint8_t const write_buf[] = {0xd0};

 write(driver, write_buf, sizeof(write_buf)); // (3)

 // Lese aus dem ID-Register. NOTE: Das ist eine separate I²C-Transaktion!

 uint8_t id;

 read(driver, &id, 1); // (4)

 printf("ID: %"PRIu8, id);

}

Der Beispielcode zeigt die vier typischen Datei-Operationen bei der Arbeit mit Device-

Dateien:

1. Wie jede andere Datei muss die Device-Datei geöffnet werden. Der Treiber richtet dabei die

notwendigen Verwaltungsstrukturen für die weitere Nutzung durch die Anwendung ein.

2. Der ioctl -Systemaufruf dient dazu, Treibereinstellungen zu ändern oder Operationen

auszuführen, die nicht über read oder write abgebildet werden können. Die Flags und

Parameter für ioctl sind treiberabhängig.

3. Der write -Systemaufruf sendet eine schreibende Transaktion auf den I²C-Bus. In der

Regel wird write verwendet, um Daten auf Busse zu schreiben oder Ausgänge zu schalten.

4. read führt eine lesende Transaktion auf dem I²C-Bus aus. read wird typischerweise

verwendet, um Gerätedaten auszulesen oder von Bussen zu empfangen.

EINLEITUNG 1

Typischerweise stellt der Kernel eine Begleitbibliothek wie libi2c für I²C-Operationen

bereit, um versionsabhängige Unterschiede zu abstrahieren. Diese Bibliotheken werden hier

nicht näher beschrieben, stellen jedoch die empfohlene Schnittstelle dar.

1.1.2. Zugriff über Sysfs

Einige Gerätetreiber registrieren keine Dateien in /dev , sondern werden über Dateien im

virtuellen Dateisystem unter /sys kontrolliert. Die Konvention dafür ist, dass für Eingabe-/

Ausgabe-Operationen mit Geräten die Dateien in /dev verwendet werden, während /sys

für strukturierte Zugriffe und Konfiguration verwendet wird[5].

Geräte-Dateien in /sys haben eine String-basierte Schnittstelle, es werden also menschen

lesbare Werte in verschiedenen Dateien geschrieben. Das macht die Interaktion mit /sys

-Dateien in der Shell attraktiv.

Folgender Shell-Code liest die momentane Batteriespannung meines Laptops aus.

ADC-Dateien finden, haben i.d.R voltage im Namen

find /sys -iname "*voltage*"

BAT='/sys/devices/[...]/BAT1/voltage_now' # Pfad gekürzt

cat $BAT

> 12832000 [µV]

Folgender Shell-Code stellt auf einem Banana Pi R3 die Drehgeschwindigkeit des CPU-

Kühlers auf 40%:

echo 40 > /sys/devices/platform/pwm-fan/hwmon/hwmon1/pwm1

2 EINLEITUNG

https://wiki.banana-pi.org/index.php?title=Banana_Pi_BPI-R3&oldid=17314

2. Beschreibung hardwarespezifischer Schnittstellen unter

Linux

2.1. I²C

Wie in der Einleitung beschrieben stellt der I²C-Treiber device-Dateien unter /dev/i2c-*

bereit.

• Implementiert in drivers/i2c/i2c-dev.c

• Offizielle Dokumentation

Implementierte Systemaufrufe:

Syscall Funktion

ioctl(<file>, I2C_SLAVE, <addr>)
Setzt die Slave-Adresse für alle folgenden I²C-

Transaktionen

write(<file>, <buf>, <len>)

Sendet die Daten aus buf in einer einzelnen

I²C-Schreib-Operation an die gesetzte Slave-

Adresse

read(<file>, <buf>, <len>)
Liest len Bytes vom ausgewählten Slave in

buf

ioctl(<file>, I2C_RDWR, <msgset>)

Sendet mehrere Schreibe- und Lese-Operatio

nen an den ausgewählten Slave in einer Trans

aktion ohne Stop-Conditions

Tabelle 1: Systemaufrufe des I²C-Treibers

In modernen Computersystemen wird der mit I²C kompatible SMBus verwendet. Daher stellt

der Treiber noch weitere ioctls bereit, die hier jedoch nicht besprochen werden.

2.2. GPIO

Der GPIO-Treiber stellt zwei Schnittstellen bereit, eine unter /dev und eine veraltete unter

/sys . Hier wird die aktuelle empfohlene Variante beschrieben.

• Implementiert in drivers/gpio/gpiolib-cdev.c

• Offizielle Dokumentation .

Implementierte Systemaufrufe:

Syscall Funktion

ioctl(<file>, GPIO_GET_CHIPINFO_IOCTL, <chip_info>)

Informatio

nen über ei

nen Gpio-

Chip holen

ioctl(<file>, GPIO_GET_LINEINFO_UNWATCH_IOCTL , <line_offset>)
Stoppt das

Beobachten

3

https://github.com/torvalds/linux/blob/master/drivers/i2c/i2c-dev.c
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html
https://github.com/torvalds/linux/blob/master/drivers/gpio/gpiolib-cdev.c
https://www.kernel.org/doc/html/latest/userspace-api/gpio/chardev.html

Syscall Funktion

eines GPIO-

Pins

ioctl(<file>, GPIO_V2_GET_LINEINFO_IOCTL, <line_info>)

Beschafft In

formationen

über einen

spezifischen

GPIO-Pin

ioctl(<file>, GPIO_V2_GET_LINEINFO_WATCH_IOCTL, <line_info>)

Beschafft In

formationen

über einen

GPIO-Pin

und macht

nachfolgen

de Ände

rungen über

read ver

fügbar

ioctl(<file>, GPIO_V2_GET_LINE_IOCTL, <line_request>)

Reserviert

und konfi

guriert ei

nen GPIO-

Pin für das

aufrufende

Programm

ioctl(<file>, GPIO_V2_LINE_SET_CONFIG_IOCTL, <line_config>)

Setzt At

tribute für

einen Pin,

zum Bei

spiel In

put/Output

oder active

LOW/HIGH

ioctl(<file>, GPIO_V2_LINE_GET_VALUES_IOCTL, <line_values>)

Liest Wer

te von meh

reren Ein

gangs-Pins

ioctl(<file>, GPIO_V2_LINE_SET_VALUES_IOCTL, <line_values>)

Setzt/Cle

ared meh

rere Aus

gangs-Pins

4

Tabelle 2: Systemaufrufe des GPIO-Treibers

2.3. ADC

ADCs werden in Linux nicht direkt als eigene Geräteklasse verwaltet, sondern sind in der

Regel als Hardware Monitoring (Überwachung) oder Industrial I/O (iio) gelistet.

Als Beispiel wird hier der Kernel-eigene Treiber für den ADC des Cirrus Logic

EP93xx SoC[6] genutzt. Dabei wird für jeden der ADC-Pins ein eigener Eintrag unter

/sys/bus/iio/devices/iio:device<N>/ angelegt, wobei 𝑁 die Geräte-ID ist:

Sysfs-Eintrag Name des gesampleten Pins

in_voltage0_raw Y-

in_voltage1_raw sX+

in_voltage2_raw sX-

in_voltage3_raw sY+

in_voltage4_raw sY-

in_voltage5_raw X+

in_voltage6_raw X-

in_voltage7_raw Y+

Tabelle 3: Sysfs-Einträge des ADC-Treibers

Das Auslesen einer dieser Datein führt synchron eine ADC-Umwandlung durch.

Aus der Dokumentation anderer ADC-Treiber[7] geht hervor, dass der in_voltageX_raw

-Wert der unskalierte Bitwert des ADC ist. Die Datei /sys/[...]/in_voltage_scale

beinhaltet den Umrechnungswert vom Rohwert zu Millivolt. Manche Treiber stellen zusätzlich

die Datei /sys/[...]/in_voltage_offset bereit, die einen konstanten Fehlerwert enthält.

Die vollständige Umrechnung ist dann:

𝑈[mV] = (voltage_raw ⋅ voltage_scale) + voltage_offset

BESCHREIBUNG HARDWARESPEZIFISCHER SCHNIT TSTELLEN UNTER LINUX 5

3. Design einer Hardwareschnittstelle für AT91SAM7-Timer

Der AT91SAM7-Mikrocontroller[8] stellt das Timer Counter Peripheral bereit; Drei unabhän

gige 16-bit Zähler, Kanäle genannt, mit einstellbaren Taktgeschwindigkeiten, Überlaufgrenzen

und Triggern.

3.1. Features

Jeder Kanal kann sich in einem der folgenden Modi befinden:

• Capture zum Festhalten von Zeitpunkten, zu denen Eingänge geschaltet wurden

• Waveform zum Erzeugen von einstellbaren Rechtecksignalen

Außerdem hat jeder Kanal drei Eingangssignale XC0-2 , zwei Ausgangssignale A/B und kann

einen von fünf Vorteilern wählen.

3.1.1. Capture-Modus

Im Capture-Modus zählt der Zähler kontinuierlich und es wir bei einem konfigurierbaren

Event (eine Flanke auf TIOA oder TIOB) der Zählerstand in eins der Register geschrieben.

Dieser Modus ist unter anderem für die Bestimmung von Frequenz, Pulszeit und Pahsenbe

stimmung eins oder mehrerer anliegender Signale gedacht.

3.1.2. Waveform-Modus

Dieser Modus ist für die Erzeugung von Rechtecksignalen gedacht. Es gibt vier Untermodi:

Modus Zählrichtung Verhalten wenn = RC

00 Hoch Nichts, nur durch Überlauf zurückgesetzt

10 Hoch Zurücksetzen auf 0

01 Hoch, dann Runter Nichts, Richtungswechsel wenn = 0 oder = 0xFFFF

11 Hoch, dann Runter Richtungswechsel

Tabelle 4: Wellenmodi im Waveform-Modus

Außerdem wird der Zählerwert immer mit den Werten in den Registern RA/RB/RC auf

Gleichheit verglichen. Die daraus entstehenden Trigger-Signale können dann die Ausganspins

A/B jeweils entweder einschalten, ausschalten oder umschalten.

3.2. Umsetzung

Die API ist an der Struktur der GPIO-API orientiert.

Jeder Kanal muss mit REQ_CHANNEL vom Kernel angefragt werden, damit ein Kanal von

genau einem Prozess verwaltet wird. Mithilfe der SET_MODE_CAPTURE und SET_MODE_WAVE

ioctl s wird der Kanal in den jeweiligen Modus versetzt und konfiguriert. Der TIMER_START

-Befehl startet einen einzelnen Kanal. Wenn der aufrufende Prozess alle Kanäle kontrolliert,

kann TIMER_START auf dem Timer selbst aufgerufen werden, was das SYNC-Signal für alle

Kanäle setzt.

Folgend eine Beispielanwendung:

6

int main() {

 int timer_fd = open("/dev/timer0");

 int ch0 = ioctl(timer_fd, REQ_CHANNEL_IOCTL, 0);

 int some_free_channel = ioctl(timer_fd, REQ_CHANNEL_IOCTL, -1);

 struct capture_config capture_config = {

 .clock = CLOCK_1, // = TIMER_CLOCK1

 .clock_burst = CLOCK_BURST_NONE, // Oder CLOCK_BURST_TIOA0/1/2

 .clock_invert = false,

 .a_edge = EDGE_RISING,

 .b_edge = EDGE_NONE,

 .external_trigger = EXT_TRIGGER_A,

 .interrupt_on = INT_LDRA | INT_LDRB | INT_OVF, // Aktivierte interrupts

 .compare = -1, //Deaktiviert CPCTRG, >0 aktiviert CPCTRG

 };

 ioctl(ch0, SET_MODE_CAPTURE, &capture_config);

 struct wave_config wave_config = {

 .clock = CLOCK_TIOA2, //-EINVAL wenn nicht verfügbar

 .clock_invert = true,

 .wave_mode = WAVE_MODE_UP_RC_TRIGGER, // WAVSEL = 10

 .ra = 100,

 .rb = 0x4000,

 .rc = 0x9fff,

 .tioa = (struct mtio) {

 .a_mode = MTIO_MODE_SET,

 .b_mode = MTIO_MODE_CLEAR,

 .c_mode = MTIO_MODE_TOGGLE,

 .sw_mode = MTIO_MODE_NONE,

 }

 .tiob = (struct mtio) {0}, // TIOB ist deaktiviert

 };

 ioctl(some_free_channel, SET_MODE_WAVE, &wave_config);

 //Würde mit dem SYNC-Signal alle Kanäle starten,

 //allerdings hat dieser Prozess nicht alle Kanäle angefragt.

 //Der Aufruf würde also fehlschlagen

 //ioctl(timer_fd, TIMER_START);

 ioctl(ch0, TIMER_START); //Setzt SWTRG

 struct capture_event capture_event;

 // Blockiert bis mindestens eins der Signale in interrupt_on ausgelöst

wurde

 read(ch0, &capture_event, sizeof(capture_event));

}

DESIGN EINER HARDWARESCHNIT TSTELLE FÜR AT91SAM7-TIMER 7

4. Scheduling bei geteilten Bussystemen

Angenommen man habe ein smartes Thermostat mit folgenden Sensoren und Aktoren, alle

angeschlossen über einen geteilten I²C-Bus:

• OLED-Display

• BME280 Temperatur- und Luftfeuchtigkeitsmesser

Jedes der Geräte hat einen eigenen Treiber, der über die kerneleigenen I²C-Funktionen auf

den Bus zugreift.

Da Displays typischerweise hohe Datenraten brauchen, verbringt der Display-Treiber viel Zeit

auf dem Bus. Zudem sollen in regelmäßigen Abständen Temperatur und Luftfeuchtigkeit vom

Sensor angefragt werden.

Abbildung 1: Gantt-Diagramm des smarten Thermostats

Wie in Abbildung 1 gezeigt, wird durch die häufigen Display-Übertragungen der Temperatur-

Sensor „ausgehungert“ (schraffierter Hintergrund) und kann seine Daten nicht rechtzeitig

übertragen.

Dieses Problem gehört zur Klasse der Scheduling-Aufgaben. Ein klassischer Lösungsansatz

wird im nächsten Abschnitt besprochen

4.1. Lösungsansatz

Da hier eine geteilte Ressource (der Bus) fair zwischen mehreren Clients (den Treibern)

verteilt werden soll, bietet sich ein Scheduling-Verfahren[9] an.

Fragt ein Client einen I²C-Transfer an, so wird er nicht direkt ausgeführt, sondern mit anderen

ausstehenden Anfragen in einer Queue (dt. Warteschlange)[10] gespeichert. Nun kann der

I²C-Scheduler die nächste anstehende Transaktion nach einem Scheduling-Verfahren wie dem

Completely Fair Scheduler[11] aussuchen und durchführen, um Aushungern zu vermeiden.

Nachfolgend ist der Ablauf mit dem simplen Round-Robin-Verfahren[12] gezeigt, das keine

Fairness garantiert:

8 SCHEDULING BEI GETEILTEN BUSSYSTEMEN

Abbildung 2: I²C-Scheduling mit Round Robin

9

Bibliografie

[1] J. Aiman, „ 5 Functions of an Operating System “. 2025.

[2] linux kernel contributors, „Character device drivers“.

[3] N. Brown, „Ghosts of Unix Past: a historical search for design patterns“. 2010.

[4] K. Veltmann, 2026.

[5] Y. Salem, „The Difference Between /dev and /sys/class“. 2024.

[6] the kernel development community, „Cirrus Logic EP93xx ADC driver“.

[7] „How to Use the SAMA5D2 ADC Under Linux®“. 2355 West Chandler Blvd. Chandler, Arizona, USA,

2019.

[8] „AT91SAM ARM-based Flash MCU“. 2355 West Chandler Blvd. Chandler, Arizona, USA, 2012.

[9] wikipedia contributors, „Prozess-Scheduler“. 2024.

[10] wikipedia contributors, „Queue (abstract data type)“. 2026.

[11] wikipedia contributors, „Completely Fair Scheduler“. 2025.

[12] wikipedia contributors, „Round Robin (Informatik)“. 2024.

	1. Einleitung
	1.1. Gerätezugriff per Dateisystem
	1.1.1. Device-Dateien
	1.1.2. Zugriff über Sysfs

	2. Beschreibung hardwarespezifischer Schnittstellen unter Linux
	2.1. I²C
	2.2. GPIO
	2.3. ADC

	3. Design einer Hardwareschnittstelle für AT91SAM7-Timer
	3.1. Features
	3.1.1. Capture-Modus
	3.1.2. Waveform-Modus

	3.2. Umsetzung

	4. Scheduling bei geteilten Bussystemen
	4.1. Lösungsansatz

	Bibliografie

